LeviCivita , Permutations , InProduct , CrossProduct , ZeroVector , BaseVector , Identity , ZeroMatrix , DiagonalMatrix , OrthogonalBasis , OrthonormalBasis , IsMatrix , Normalize , Transpose , Determinant , Trace , Inverse , Minor , CoFactor , SolveMatrix , CharacteristicEquation , EigenValues , EigenVectors , IsHermitian , IsOrthogonal , IsSymmetric , IsSkewSymmetric , IsUnitary , IsIdempotent , JacobianMatrix , VandermondeMatrix , HessianMatrix , WronskianMatrix , SylvesterMatrix .

Linear Algebra

This chapter describes the commands for doing linear algebra. They can be used to manipulate vectors, represented as lists, and matrices, represented as lists of lists.

LeviCivita totally anti-symmetric Levi-Civita symbol
Permutations get all permutations of a list
InProduct inner product of vectors
CrossProduct outer product of vectors
ZeroVector create a vector with all zeroes
BaseVector base vector
Identity make identity matrix
ZeroMatrix make a zero matrix
DiagonalMatrix construct a diagonal matrix
OrthogonalBasis create an orthogonal basis
OrthonormalBasis create an orthonormal basis
IsMatrix test for a matrix
Normalize normalize a vector
Transpose get transpose of a matrix
Determinant determinant of a matrix
Trace trace of a matrix
Inverse get inverse of a matrix
Minor get principal minor of a matrix
CoFactor cofactor of a matrix
SolveMatrix solve a linear system
CharacteristicEquation get characteristic polynomial of a matrix
EigenValues get eigenvalues of a matrix
EigenVectors get eigenvectors of a matrix
IsHermitian test for a Hermitian matrix
IsOrthogonal test for an orthogonal matrix
IsSymmetric test for a symmetric matrix
IsSkewSymmetric test for a skew-symmetric matrix
IsUnitary test for a unitary matrix
IsIdempotent test whether a matrix is idempotent
JacobianMatrix calculate the Jacobian matrix of n functions in n variables
VandermondeMatrix calculate the Vandermonde matrix
HessianMatrix calculate the Hessian matrix
WronskianMatrix calculate the Wronskian matrix
SylvesterMatrix calculate the Sylvester matrix of two polynomials


LeviCivita -- totally anti-symmetric Levi-Civita symbol

Standard library
Calling format:
LeviCivita(list)

Parameters:
list -- a list of integers 1 .. n in some order

Description:
LeviCivita implements the Levi-Civita symbol. This is generally useful for tensor calculus. list should be a list of integers, and this function returns 1 if the integers are in successive order, eg. LeviCivita( {1,2,3,...} ) would return 1. Swapping two elements of this list would return -1. So, LeviCivita( {2,1,3} ) would evaluate to -1.

Examples:
In> LeviCivita({1,2,3})
Out> 1;
In> LeviCivita({2,1,3})
Out> -1;
In> LeviCivita({2,2,3})
Out> 0;

See also:
Permutations .


Permutations -- get all permutations of a list

Standard library
Calling format:
Permutations(list)

Parameters:
list -- a list of elements

Description:
Permutations returns a list with all the permutations of the original list.

Examples:
In> Permutations({a,b,c})
Out> {{a,b,c},{a,c,b},{c,a,b},{b,a,c},
{b,c,a},{c,b,a}};

See also:
LeviCivita .


InProduct -- inner product of vectors

Standard library
Calling format:
InProduct(a,b)
a . b (prec. 3)

Parameters:
a, b -- vectors of equal length

Description:
The inner product of the two vectors "a" and "b" is returned. The vectors need to have the same size.

Examples:
In> {a,b,c} . {d,e,f};
Out> a*d+b*e+c*f;

See also:
CrossProduct .


CrossProduct -- outer product of vectors

Standard library
Calling format:
CrossProduct(a,b)
a X b  (prec. 3)

Parameters:
a, b -- three-dimensional vectors

Description:
The outer product (also called the cross product) of the vectors "a" and "b" is returned. The result is perpendicular to both "a" and "b" and its length is the product of the lengths of the vectors. Both "a" and "b" have to be three-dimensional.

Examples:
In> {a,b,c} X {d,e,f};
Out> {b*f-c*e,c*d-a*f,a*e-b*d};

See also:
InProduct .


ZeroVector -- create a vector with all zeroes

Standard library
Calling format:
ZeroVector(n)

Parameters:
n -- length of the vector to return

Description:
This command returns a vector of length "n", filled with zeroes.

Examples:
In> ZeroVector(4)
Out> {0,0,0,0};

See also:
BaseVector , ZeroMatrix , IsZeroVector .


BaseVector -- base vector

Standard library
Calling format:
BaseVector(k, n)

Parameters:
k -- index of the base vector to construct

n -- dimension of the vector

Description:
This command returns the "k"-th base vector of dimension "n". This is a vector of length "n" with all zeroes except for the "k"-th entry, which contains a 1.

Examples:
In> BaseVector(2,4)
Out> {0,1,0,0};

See also:
ZeroVector , Identity .


Identity -- make identity matrix

Standard library
Calling format:
Identity(n)

Parameters:
n -- size of the matrix

Description:
This commands returns the identity matrix of size "n" by "n". This matrix has ones on the diagonal while the other entries are zero.

Examples:
In> Identity(3)
Out> {{1,0,0},{0,1,0},{0,0,1}};

See also:
BaseVector , ZeroMatrix , DiagonalMatrix .


ZeroMatrix -- make a zero matrix

Standard library
Calling format:
ZeroMatrix(n, m)

Parameters:
n -- number of rows

m -- number of columns

Description:
This command returns a matrix with "n" rows and "m" columns, completely filled with zeroes.

Examples:
In> ZeroMatrix(3,4)
Out> {{0,0,0,0},{0,0,0,0},{0,0,0,0}};

See also:
ZeroVector , Identity .


DiagonalMatrix -- construct a diagonal matrix

Standard library
Calling format:
DiagonalMatrix(d)

Parameters:
d -- list of values to put on the diagonal

Description:
This command constructs a diagonal matrix, that is a square matrix whose off-diagonal entries are all zero. The elements of the vector "d" are put on the diagonal.

Examples:
In> DiagonalMatrix(1 .. 4)
Out> {{1,0,0,0},{0,2,0,0},{0,0,3,0},{0,0,0,4}};

See also:
Identity , ZeroMatrix .


OrthogonalBasis -- create an orthogonal basis

Standard library
Calling format:
OrthogonalBasis(W)

Parameters:
W - A linearly independent set of row vectors (aka a matrix)

Description:
Given a linearly independent set W (constructed of rows vectors), this command returns an orthogonal basis V for W, which means that span(V) = span(W) and InProduct(V[i],V[j]) = 0 when i != j. This function uses the Gram-Schmidt orthogonalization process.

Examples:
In> OrthogonalBasis({{1,1,0},{2,0,1},{2,2,1}}) 
Out> {{1,1,0},{1,-1,1},{-1/3,1/3,2/3}};

See also:
OrthonormalBasis , InProduct .


OrthonormalBasis -- create an orthonormal basis

Standard library
Calling format:
OrthonormalBasis(W)

Parameters:
W - A linearly independent set of row vectors (aka a matrix)

Description:
Given a linearly independent set W (constructed of rows vectors), this command returns an orthonormal basis V for W. This is done by first using OrthogonalBasis(W), then dividing each vector by its magnitude, so as the give them unit length.

Examples:
In> OrthonormalBasis({{1,1,0},{2,0,1},{2,2,1}})
Out> {{Sqrt(1/2),Sqrt(1/2),0},{Sqrt(1/3),-Sqrt(1/3),Sqrt(1/3)},
	{-Sqrt(1/6),Sqrt(1/6),Sqrt(2/3)}};

See also:
OrthogonalBasis , InProduct , Normalize .


IsMatrix -- test for a matrix

Standard library
Calling format:
IsMatrix(M)

Parameters:
M -- a mathematical object

Description:
IsMatrix returns True if M is a matrix, False otherwise. Something is considered to be a matrix if it is a list and all the entries of this list are themselves lists.

Examples:
In> IsMatrix(ZeroMatrix(3,4))
Out> True;
In> IsMatrix(ZeroVector(4))
Out> False;
In> IsMatrix(3)
Out> False;

See also:
IsVector .


Normalize -- normalize a vector

Standard library
Calling format:
Normalize(v)

Parameters:
v -- a vector

Description:
Return the normalized (unit) vector parallel to v: a vector having the same direction but with length 1.

Examples:
In> Normalize({3,4})
Out> {3/5,4/5};
In> % . %
Out> 1;

See also:
InProduct , CrossProduct .


Transpose -- get transpose of a matrix

Standard library
Calling format:
Transpose(M)

Parameters:
M -- a matrix

Description:
Transpose returns the transpose of a matrix M. Because matrices are just lists of lists, this is a useful operation too for lists.

Examples:
In> Transpose({{a,b}})
Out> {{a},{b}};


Determinant -- determinant of a matrix

Standard library
Calling format:
Determinant(M)

Parameters:
M -- a matrix

Description:
Returns the determinant of a matrix M.

Examples:
In> DiagonalMatrix(1 .. 4)
Out> {{1,0,0,0},{0,2,0,0},{0,0,3,0},{0,0,0,4}};
In> Determinant(%)
Out> 24;


Trace -- trace of a matrix

Standard library
Calling format:
Trace(M)

Parameters:
M -- a matrix

Description:
Trace returns the trace of a matrix M (defined as the sum of the elements on the diagonal of the matrix).

Examples:
In> DiagonalMatrix(1 .. 4)
Out> {{1,0,0,0},{0,2,0,0},{0,0,3,0},{0,0,0,4}};
In> Trace(%)
Out> 10;


Inverse -- get inverse of a matrix

Standard library
Calling format:
Inverse(M)

Parameters:
M -- a matrix

Description:
Inverse returns the inverse of matrix M. The determinant of M should be non-zero. Because this function uses Determinant for calculating the inverse of a matrix, you can supply matrices with non-numeric (symbolic) matrix elements.

Examples:
In> DiagonalMatrix({a,b,c})
Out> {{a,0,0},{0,b,0},{0,0,c}};
In> Inverse(%)
Out> {{(b*c)/(a*b*c),0,0},{0,(a*c)/(a*b*c),0},
{0,0,(a*b)/(a*b*c)}};
In> Simplify(%)
Out> {{1/a,0,0},{0,1/b,0},{0,0,1/c}};

See also:
Determinant .


Minor -- get principal minor of a matrix

Standard library
Calling format:
Minor(M,i,j)

Parameters:
M -- a matrix

i, j - positive integers

Description:
Minor returns the minor of a matrix around the element ( i, j). The minor is the determinant of the matrix obtained from M by deleting the i-th row and the j-th column.

Examples:
In> A := {{1,2,3}, {4,5,6}, {7,8,9}};
Out> {{1,2,3},{4,5,6},{7,8,9}};
In> PrettyForm(A);

/                    \
| ( 1 ) ( 2 ) ( 3 )  |
|                    |
| ( 4 ) ( 5 ) ( 6 )  |
|                    |
| ( 7 ) ( 8 ) ( 9 )  |
\                    /

Out> True;
In> Minor(A,1,2);
Out> -6;
In> Determinant({{2,3}, {8,9}});
Out> -6;

See also:
CoFactor , Determinant , Inverse .


CoFactor -- cofactor of a matrix

Standard library
Calling format:
CoFactor(M,i,j)

Parameters:
M -- a matrix

i, j - positive integers

Description:
CoFactor returns the cofactor of a matrix around the element ( i, j). The cofactor is the minor times (-1)^(i+j).

Examples:
In> A := {{1,2,3}, {4,5,6}, {7,8,9}};
Out> {{1,2,3},{4,5,6},{7,8,9}};
In> PrettyForm(A);

/                    \
| ( 1 ) ( 2 ) ( 3 )  |
|                    |
| ( 4 ) ( 5 ) ( 6 )  |
|                    |
| ( 7 ) ( 8 ) ( 9 )  |
\                    /

Out> True;
In> CoFactor(A,1,2);
Out> 6;
In> Minor(A,1,2);
Out> -6;
In> Minor(A,1,2) * (-1)^(1+2);
Out> 6;

See also:
Minor , Determinant , Inverse .


SolveMatrix -- solve a linear system

Standard library
Calling format:
SolveMatrix(M,v)

Parameters:
M -- a matrix

v -- a vector

Description:
SolveMatrix returns the vector x that satisfies the equation M*x=v. The determinant of M should be non-zero.

Examples:
In> A := {{1,2}, {3,4}};
Out> {{1,2},{3,4}};
In> v := {5,6};
Out> {5,6};
In> x := SolveMatrix(A, v);
Out> {-4,9/2};
In> A * x;
Out> {5,6};

See also:
Inverse , Solve , PSolve , Determinant .


CharacteristicEquation -- get characteristic polynomial of a matrix

Standard library
Calling format:
CharacteristicEquation(matrix,var)

Parameters:
matrix -- a matrix

var -- a free variable

Description:
CharacteristicEquation returns the characteristic equation of "matrix", using "var". The zeros of this equation are the eigenvalues of the matrix, Det(matrix-I*var);

Examples:
In> DiagonalMatrix({a,b,c})
Out> {{a,0,0},{0,b,0},{0,0,c}};
In> CharacteristicEquation(%,x)
Out> (a-x)*(b-x)*(c-x);
In> Expand(%,x)
Out> (b+a+c)*x^2-x^3-((b+a)*c+a*b)*x+a*b*c;

See also:
EigenValues , EigenVectors .


EigenValues -- get eigenvalues of a matrix

Standard library
Calling format:
EigenValues(matrix)

Parameters:
matrix -- a square matrix

Description:
EigenValues returns the eigenvalues of a matrix. The eigenvalues x of a matrix M are the numbers such that M*v=x*v for some vector.

It first determines the characteristic equation, and then factorizes this equation, returning the roots of the characteristic equation Det(matrix-x*identity).

Examples:
In> M:={{1,2},{2,1}}
Out> {{1,2},{2,1}};
In> EigenValues(M)
Out> {3,-1};

See also:
EigenVectors , CharacteristicEquation .


EigenVectors -- get eigenvectors of a matrix

Standard library
Calling format:
EigenVectors(A,eigenvalues)

Parameters:
matrix -- a square matrix

eigenvalues -- list of eigenvalues as returned by EigenValues

Description:
EigenVectors returns a list of the eigenvectors of a matrix. It uses the eigenvalues and the matrix to set up n equations with n unknowns for each eigenvalue, and then calls Solve to determine the values of each vector.

Examples:
In> M:={{1,2},{2,1}}
Out> {{1,2},{2,1}};
In> e:=EigenValues(M)
Out> {3,-1};
In> EigenVectors(M,e)
Out> {{-ki2/ -1,ki2},{-ki2,ki2}};

See also:
EigenValues , CharacteristicEquation .


IsHermitian -- test for a Hermitian matrix

Standard library
Calling format:
IsHermitian(A)

Parameters:
A -- a square matrix

Description:
IsHermitian(A) returns True if A is Hermitian and False otherwise. A is a Hermitian matrix iff Conjugate( Transpose A )= A. If A is a real matrix, it must be symmetric to be Hermitian.

Examples:
In> IsHermitian({{0,I},{-I,0}})
Out> True;
In> IsHermitian({{0,I},{2,0}})
Out> False;

See also:
IsUnitary .


IsOrthogonal -- test for an orthogonal matrix

Standard library
Calling format:
IsOrthogonal(A)

Parameters:
A -- square matrix

Description:
IsOrthogonal(A) returns True if A is orthogonal and False otherwise. A is orthogonal iff A*Transpose( A) = Identity, or equivalently Inverse( A) = Transpose( A).

Examples:
In> A := {{1,2,2},{2,1,-2},{-2,2,-1}};
Out> {{1,2,2},{2,1,-2},{-2,2,-1}};
In> PrettyForm(A/3)
/                      \
| / 1 \  / 2 \ / 2 \   |
| | - |  | - | | - |   |
| \ 3 /  \ 3 / \ 3 /   |
|                      |
| / 2 \  / 1 \ / -2 \  |
| | - |  | - | | -- |  |
| \ 3 /  \ 3 / \ 3  /  |
|                      |
| / -2 \ / 2 \ / -1 \  |
| | -- | | - | | -- |  |
| \ 3  / \ 3 / \ 3  /  |
\                      /
Out> True;
In> IsOrthogonal(A/3)
Out> True;


IsSymmetric -- test for a symmetric matrix

Standard library
Calling format:
IsSymmetric(A)

Parameters:
A -- a square matrix

Description:
IsSymmetric(A) returns True if A is symmetric and False otherwise. A is symmetric iff Transpose ( A) = A. All Hermitian matrices are symmetric.

Examples:
In> A := {{1,0,0,0,1},{0,2,0,0,0},{0,0,3,0,0},
  {0,0,0,4,0},{1,0,0,0,5}};
In> PrettyForm(A)
/                                \
| ( 1 ) ( 0 ) ( 0 ) ( 0 ) ( 1 )  |
|                                |
| ( 0 ) ( 2 ) ( 0 ) ( 0 ) ( 0 )  |
|                                |
| ( 0 ) ( 0 ) ( 3 ) ( 0 ) ( 0 )  |
|                                |
| ( 0 ) ( 0 ) ( 0 ) ( 4 ) ( 0 )  |
|                                |
| ( 1 ) ( 0 ) ( 0 ) ( 0 ) ( 5 )  |
\                                /
Out> True;
In> IsSymmetric(A)
Out> True;
	

See also:
IsHermitian , IsSkewSymmetric .


IsSkewSymmetric -- test for a skew-symmetric matrix

Standard library
Calling format:
IsSkewSymmetric(A)

Parameters:
A -- a square matrix

Description:
IsSkewSymmetric(A) returns True if A is skew symmetric and False otherwise. A is skew symmetic iff Transpose A =-A.

Examples:
In> A := {{0,-1},{1,0}}
Out> {{0,-1},{1,0}};
In> PrettyForm(%)
/               \
| ( 0 ) ( -1 )  |
|               |
| ( 1 ) ( 0 )   |
\               /
Out> True;
In> IsSkewSymmetric(A);
Out> True;

See also:
IsSymmetric , IsHermitian .


IsUnitary -- test for a unitary matrix

Standard library
Calling format:
IsUnitary(A)

Parameters:
A -- a square matrix

Description:
This function tries to find out if A is unitary.

A matrix A is orthogonal iff A^(-1) = Transpose( Conjugate(A) ). This is equivalent to the fact that the columns of A build an orthonormal system (with respect to the scalar product defined by InProduct).

Examples:
In> IsUnitary({{0,I},{-I,0}})
Out> True;
In> IsUnitary({{0,I},{2,0}})
Out> False;

See also:
IsHermitian , IsSymmetric .


IsIdempotent -- test whether a matrix is idempotent

Standard library
Calling format:
IsIdempotent(A)

Parameters:
A -- a square matrix

Description:
IsIdempotent(A) returns True if A is idempotent and False otherwise. A is idempotent iff A^2 = A. Note that this also implies that A to any power is A.

Examples:
In> IsIdempotent(ZeroMatrix(10,10));
Out> True;
In> IsIdempotent(Identity(20))
Out> True;


JacobianMatrix -- calculate the Jacobian matrix of n functions in n variables

Standard library
Calling format:
JacobianMatrix(functions,variables)

Parameters:
functions -- An n dimensional vector of functions

variables -- An n dimensional vector of variables

Description:
The function JacobianMatrix calculates the Jacobian matrix of n functions in n variables.

The ijth element of the Jacobian matrix is defined as the derivative of ith function with respect to the jth variable.

Examples:
In> JacobianMatrix( {Sin(x),Cos(y)}, {x,y} ); 
Out> {{Cos(x),0},{0,-Sin(y)}};
In> PrettyForm(%)
/                                 \
| ( Cos( x ) ) ( 0 )              |
|                                 |
| ( 0 )        ( -( Sin( y ) ) )  |
\                                 /


VandermondeMatrix -- calculate the Vandermonde matrix

Standard library
Calling format:
VandermondeMatrix(vector)
Parameters:
vector -- An n dimensional vector

Description:
The function VandermondeMatrix calculates the Vandermonde matrix of a vector.

The ijth element of the Vandermonde matrix is defined as i^(j-1).

Examples:
In> VandermondeMatrix({1,2,3,4})
Out> {{1,1,1,1},{1,2,3,4},{1,4,9,16},{1,8,27,64}};
In>PrettyForm(%)
/                            \
| ( 1 ) ( 1 ) ( 1 )  ( 1 )   |
|                            |
| ( 1 ) ( 2 ) ( 3 )  ( 4 )   |
|                            |
| ( 1 ) ( 4 ) ( 9 )  ( 16 )  |
|                            |
| ( 1 ) ( 8 ) ( 27 ) ( 64 )  |
\                            /


HessianMatrix -- calculate the Hessian matrix

Standard library
Calling format:
HessianMatrix(function,var)
Parameters:
function -- An function in n variables

var -- An n dimensian vector of variables

Description:
The function HessianMatrix calculates the Hessian matrix of a vector.

The ijth element of the Hessian matrix is defined as Deriv(var[i])Deriv(var[j])function. If the third order mixed partials are continuous, then the Hessian matrix is symmetric.

The Hessian matrix is used in the second derivative test to discern if a critical point is a local maximum, local minimum or a saddle point.

Examples:
In> HessianMatrix(3*x^2-2*x*y+y^2-8*y, {x,y} )
Out> {{6,-2},{-2,2}};
In> PrettyForm(%)
/                \
| ( 6 )  ( -2 )  |
|                |
| ( -2 ) ( 2 )   |
\                /


WronskianMatrix -- calculate the Wronskian matrix

Standard library
Calling format:
WronskianMatrix(func,var)
Parameters:
func -- An n dimensional vector of functions

var -- A variable to differentiate with respect to

Description:
The function WronskianMatrix calculates the Wronskian matrix of n functions.

The Wronskian matrix is created by putting each function as the first element of each column, and filling in the rest of each column by the ( i-1)-th derivative, where i is the current row.

The Wronskian matrix is used to verify if n functions are linearly independent, usually solutions to a differential equation. If the determinant of the Wronskian matrix is zero, then the functions are dependent, otherwise they are independent.

Examples:
In> WronskianMatrix({Sin(x),Cos(x),x^4},x);
Out> {{Sin(x),Cos(x),x^4},{Cos(x),-Sin(x),4*x^3},
  {-Sin(x),-Cos(x),12*x^2}};
In> PrettyForm(%)
/                                                 \
| ( Sin( x ) )      ( Cos( x ) )      /  4 \      |
|                                     \ x  /      |
|                                                 |
| ( Cos( x ) )      ( -( Sin( x ) ) ) /      3 \  |
|                                     \ 4 * x  /  |
|                                                 |
| ( -( Sin( x ) ) ) ( -( Cos( x ) ) ) /       2 \ |
|                                     \ 12 * x  / |
\                                                 /
The last element is a linear combination of the first two, so the determinant is zero:
In> Determinant( WronskianMatrix( {x^4,x^3,2*x^4 
  + 3*x^3},x ) )
Out> x^4*3*x^2*(24*x^2+18*x)-x^4*(8*x^3+9*x^2)*6*x
  +(2*x^4+3*x^3)*4*x^3*6*x-4*x^6*(24*x^2+18*x)+x^3
  *(8*x^3+9*x^2)*12*x^2-(2*x^4+3*x^3)*3*x^2*12*x^2;
In> Simplify(%)
Out> 0;


SylvesterMatrix -- calculate the Sylvester matrix of two polynomials

Standard library
Calling format:
SylvesterMatrix(poly1,poly2,variable)

Parameters:
poly1 -- polynomial

poly2 -- polynomial

variable -- variable to express the matrix for

Description:
The function SylvesterMatrix calculates the Sylvester matrix for a pair of polynomials.

The Sylvester matrix is closely related to the resultant, which is defined as the determinant of the Sylvester matrix. Two polynomials share common roots only if the resultant is zero.

Examples:
In> ex1:= x^2+2*x-a
Out> x^2+2*x-a;
In> ex2:= x^2+a*x-4
Out> x^2+a*x-4;
In> SylvesterMatrix(ex1,ex2,x)
Out> {{1,2,-a,0},{0,1,2,-a},
  {1,a,-4,0},{0,1,a,-4}};
In> Determinant(%)
Out> 16-a^2*a- -8*a-4*a+a^2- -2*a^2-16-4*a;
In> Simplify(%)
Out> 3*a^2-a^3;

The above example shows that the two polynomials have common zeros if a=3.

See also:
Determinant , Simplify , Solve , PSolve .